Top-k sequence pattern mining with non-overlapping condition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Top-K Non-redundant Association Rules

Association rule mining is a fundamental data mining task. However, depending on the choice of the thresholds, current algorithms can become very slow and generate an extremely large amount of results or generate too few results, omitting valuable information. Furthermore, it is well-known that a large proportion of association rules generated are redundant. In previous works, these two problem...

متن کامل

Mining Top-K Association Rules

Mining association rules is a fundamental data mining task. However, depending on the choice of the parameters (the minimum confidence and minimum support), current algorithms can become very slow and generate an extremely large amount of results or generate too few results, omitting valuable information. This is a serious problem because in practice users have limited resources for analyzing t...

متن کامل

Mining Top-K Multidimensional Gradients

Several business applications such as marketing basket analysis, clickstream analysis, fraud detection and churning migration analysis demand gradient data analysis. By employing gradient data analysis one is able to identify trends, outliers and answering “what-if” questions over large databases. Gradient queries were first introduced by Imielinski et al [1] as the cubegrade problem. The main ...

متن کامل

Mining Top-K Sequential Rules

Mining sequential rules requires specifying parameters that are often difficult to set (the minimal confidence and minimal support). Depending on the choice of these parameters, current algorithms can become very slow and generate an extremely large amount of results or generate too few results, omitting valuable information. This is a serious problem because in practice users have limited reso...

متن کامل

Top-k Correlative Graph Mining

Correlation mining has been widely studied due to its ability for discovering the underlying occurrence dependency between objects. However, correlation mining in graph databases is expensive due to the complexity of graph data. In this paper, we study the problem of mining top-k correlative subgraphs in the database, which share similar occurrence distributions with a given query graph. The se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2018

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1805703c